Course Home Page – STOR 881 Object Oriented Data Analysis – Spring 2024

Instructor:    J. S. Marron


Office:   352 Hanes Hall



Course Notes

  1.     STOR881-01-11-2024.pptx:  Organizational Matters, OODA Book, What is OODA?, Taste of OODA Examples (including Spanish Male Mortality, Amplitude – Phase, Shapes, Sounds, Faces), 3 Major Phases of OODA, Projections, Scatterplot Matrices, Trait by Trait Views.
  2.    STOR881-01-16-2024.pptx:  Principal Component Analysis (PCA), Object Space – Trait Space, Scree Plots, Define Modes of Variation, Prob. Dist’ns as data objects, PCA Toy & Real Examples, Shifted Parabolas Data.
  3.   STOR881-01-18-2024.pptx:   Lung Cancer Data, Limitations of PCA: Apple, Banana, Pear, NCI-60 Data, Caution about DWD, Inference using DiProPerm.
  4.   STOR881-01-23-2024.pptx:  OODA Terminology, Marginal Distribution Plots, Marginal Distribution Plot Analysis of Drug Discovery Data, Normalization and Correlation PCATransformations.
  5.  STOR881-01-25-2024.pptx:  Transformations, Melanoma Data, Automatic Shifted Log Transformation, ROC Curve to Quantify Impact of Transformation on Gene Expression Data, Heatmap Data Visualization.
  6.  STOR881-01-30-2024.pptx:  Other Directions for Scatterplot Views, Centering, Details of PCA, Review Linear Algebra, Covariance Matrices, PCA as Optimization.
  7.  STOR881-02-01-2024.pptx:  Alternate Viewpoints of PCA (Data Representation, Distribution of Energy, Simulation, Comparison to SVD), Distance Methods, Distance Based Centers, Multidimensional Scaling, Shapes as Data Objects, Shape Representations (Landmark, Boundary, Shape).
  8.  STOR881-02-06-2024.pptx: Male Pelvis Data, Manifold Data, Directional Data, S-rep Analysis, Principal Geodesic Analysis.  Sara Peterson – Joint Dimension Reduction for Integrated Tumor/Model Pairs
  9.  STOR881-02-08-2024.pptx: Principal Nested Spheres, Polysphere PCA, Scaled Torus PCA, Nonnegative Nested Cone Analysis Principal Curves and Surfaces, General Motivation for Backwards Methods.  Teresa McGhee – QTl Mapping With Mediation
  10.  STOR881-02-13-2024.pptx:  No Class, Wellness Day
  11.  STOR881-02-15-2024.pptx:  Principal Curves and Surfaces, General Motivation for Backwards Methods, Curve Registration, Shifted Betas Example, Amplitude and Phase Modes of Variation.  Victoria Sagasta Pereira – MMM
  12.  STOR881-02-20-2024.pptx: Amplitude and Phase Modes of Variation, Fisher-Rao Curve Estimation, Principal Nested Spheres on SRVF Sphere.  Michael Nisenzon –
  13.  STOR881-02-22-2024.pptx: Principal Nested Spheres on SRVF Sphere, Juggling Data, Data Integration, Partial Least Squares.  Hyeon Lee – Tree PCA
  14.  STOR881-02-27-2024.pptx:  Canonical Correlation Analysis, Angle Based Joint and Individual Variation Explained (AJIVE), FMRI Data, AJIVE Algorithm.  Katelyn McInerney – Object Oriented Perspective on Genome Types
  15.  STOR881-02-29-2024.pptx: AJIVE Algorithm and Diagnostics, Breast Cancer Images and Genomics, Multiple Genomics in Breast Cancer, Amplification Adjustment in Single Cell RNAseq, Data Integration Via Analysis of Subspaces (DIVAS).  Andrew Walker – Multiplex IF Image Analysis
  16.  STOR881-03-05-2024.pptx:  Enes Kelestemur – Drug Discovery
  17.  STOR881-03-07-2024.pptx:  Shiying Li – Optimal transport-based embeddings
  18.  STOR881-03-12-2024.pptx:  No Class, Spring Break
  19.  STOR881-03-14-2024.pptx:  No Class, Spring Break
  20.  STOR881-03-19-2024.pptx:  Gilbert Giri – Evolution of Gene Regulation
  21.  STOR881-03-21-2024.pptx:  Tianzhu Liu – Topics Related to Optimization
  22.  STOR881-03-26-2024.pptx:  Kendall Thomas – Biometric or GPS Data?
  23.  STOR881-03-28-2024.pptx:  Jason Hu – ???
  24.  STOR881-04-02-2024.pptx:  Kyung Rok Kim – ?
  25.  STOR881-04-06-2024.pptx:  Aneer Qaqish – Gaussian Processes
  26.  STOR881-04-09-2024.pptx:  Grace Smith – LDA
  27.  STOR881-04-11-2024.pptx:  Qichen Wang – Breast Cancer Epidemiology Study
  28.  STOR881-04-16-2024.pptx:  Yuhao Zhao – ???
  29.  STOR881-04-18-2024.pptx:  Ashley Buck – phenotyping gait biomechanics in knee osteoarthritis
  30.  STOR881-04-23-2024.pptx:  Charles Zhao – ???
  31.  STOR881-04-25-2024.pptx:  Yu Chen – FMRI Clustering
  32.  STOR881-04-30-2024.pptx:



Ahn, J., Marron, J. S., Muller, K. M., & Chi, Y. Y. (2007) The high-dimension, low-sample-size geometric representation holds under mild conditions. Biometrika, 94(3), 760-766 (cited 3/5/24)

Aitchison, J. (1982) The statistical analysis of compositional data. Journal of the Royal Statistical Society: Series B (Methodological), 44, 139-160 (cited 1/18/24)

Amari, S. I. (2012). Differential-geometrical methods in statistics (Vol. 28). Springer Science & Business Media (cited 2/20/24)

Anderson, T. W., & Darling, D. A. (1952) Asymptotic theory of certain” goodness of fit” criteria based on stochastic processes. The Annals of Mathematical Statistics, 193-212  (cited 1/25/24)

Aoshima, M., Shen, D., Shen, H., Yata, K., Zhou, Y. H., & Marron, J. S. (2018). A survey of high dimension low sample size asymptotics. Australian & New Zealand journal of statistics, 60(1), 4-19 (cited 3/7/24)

Bai, Z. D., & Saranadasa, H. (1996) Effect of high dimension: by an example of a two sample problem. Statistica Sinica, 6(2), 311-329 (cited 1/18/24)

Basser, P. J., Mattiello, J., & LeBihan, D. (1994). MR diffusion tensor spectroscopy and imaging. Biophysical journal, 66(1), 259-267 (cited 2/15/24)

Benito, M., Parker, J., Du, Q., Wu, J., Xiang, D., Perou, C. M., & Marron, J. S. (2004) Adjustment of systematic microarray data biases. Bioinformatics, 20(1), 105-114 (cited 1/11/22)

Bernardi, M., Sangalli, L. M., Secchi, P., & Vantini, S. (2014). Analysis of proteomics data: Block k-mean alignment, Electronic Journal of Statistics, 8 (2), 1714-1723, (2014) DOI: 10.1214/14-EJS900A (cited 2/20/24)

Borysov, P., Hannig, J., Marron, J. S., Muratov, E., Fourches, D., & Tropsha, A. (2016). Activity prediction and identification of mis‐annotated chemical compounds using extreme descriptors. Journal of Chemometrics, 30(3), 99-108 (cited 1/23/24)

Bottai, M., Kim, T., Lieberman, B., Luta, G., & Peña, E. (2022) On Optimal Correlation-Based Prediction. The American Statistician, 76(4), 313-321 (cited 1/30/24)

Box, G. E., & Cox, D. R. (1964). An analysis of transformations. Journal of the Royal Statistical Society. Series B (Methodological), 211-252 (cited 1/25/24)

Bradley, R. C. (2005). Basic properties of strong mixing conditions. A survey and some open questions. Probab. Surv. 2 107–144 (electronic). (Update of, and a supplement to, the 1986 original.)  (cited 3/5/24)

Brooks, J. P., Dulá, J. H., & Boone, E. L. (2013). A pure L1-norm principal component analysis. Computational statistics & data analysis, 61, 83-98 (cited 2/15/24)

Bullitt, E., & Aylward, S. R. (2002). Volume rendering of segmented image objects. IEEE Transactions on Medical Imaging, 21(8), 998-1002. (cited 1/11/24)

Cabanski, C. R., Qi, Y., Yin, X., Bair, E., Hayward, M. C., Fan, C., Li, J., Wilkerson, M. D., Marron, J. S., Perou, C. M. and Hayes, D. N. (2010) SWISS MADE: Standardized WithIn Class Sum of Squares to Evaluate Methodologies and Dataset Elements, PLoS ONE, 5(3): e9905.doi:10.1371/journal.pone.0009905, PMCID: PMC2845619.   (cited 3/19/24)

Cai, T., Liu, W., & Xia, Y. (2014) Two‐sample test of high dimensional means under dependence. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 76(2), 349-372 (cited 1/18/24)

Carmichael, I., Calhoun, B. C., Hoadley, K. A., Troester, M. A., Geradts, J., Couture, H. D., … & Marron, J. S. (2021). Joint and individual analysis of breast cancer histologic images and genomic covariates. The Annals of Applied Statistics, 15(4), 1697-1722 (cited 2/27/24, 2/29/24)

Cates, J., Fletcher, P. T., Styner, M., Shenton, M., & Whitaker, R. (2007, July). Shape modeling and analysis with entropy-based particle systems. In Biennial International Conference on Information Processing in Medical Imaging (pp. 333-345). Springer, Berlin, Heidelberg (cited 1/18/24)

Cattell, R. B. (1966) The scree test for the number of factors. Multivariate Behavioral Research, 1(2), 245-276 (cited 1/16/24, 1/30/24, 3/7/24)

Chaney, E. L., Pizer, S., Joshi, S., Broadhurst, R., Fletcher, T., Gash, G., … & Tracton, G. (2004). Automatic male pelvis segmentation from CT images via statistically trained multi-object deformable m-rep models. International Journal of Radiation Oncology, Biology, Physics, 60(1), S153-S154. (cited 1/11/24)

Chaudhuri, P. and Marron, J. S. (1999) SiZer for exploration of structure in curves, Journal of the American Statistical Association, 94, 807-823 (cited 3/26/24)

Chaudhuri, P., & Marron, J. S. (2000). Scale space view of curve estimation. Annals of Statistics, 408-428 (cited 3/26/24)

Chen, M., & Zhou, X. (2016). Single Cell Partial Least Squares, unpublished manuscript (cited 2/29/24)

Chen, S. X., & Qin, Y. L. (2010) A two-sample test for high-dimensional data with applications to gene-set testing. The Annals of Statistics, 808-835  (cited 1/18/24)

Clarke, B. R. (2018). Robustness theory and application. John Wiley & Sons (cited 3/28/24)

Dai, W., & Genton, M. G. (2016). Directional outlyingness for multivariate functional data. arXiv preprint arXiv:1612.04615 (cited 3/28/24)

Dai, W., & Genton, M. G. (2017). Multivariate Functional Data Visualization and Outlier Detection. arXiv preprint arXiv:1703.06419. (cited 3/28/24)

Damon, J., & Marron, J. S. (2014). Backwards principal component analysis and principal nested relations. Journal of Mathematical Imaging and Vision, 50(1-2), 107-114 (cited 2/15/24)

DeLong, E. R., DeLong, D. M., & Clarke-Pearson, D. L. (1988). Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach. Biometrics, 44, 837-845 (cited 1/25/24)

Dobriban, E. (2015). Efficient computation of limit spectra of sample covariance matrices. Random Matrices: Theory and Applications, 4(04), 1550019 (cited 3/7/24)

Eltzner, B., Jung, S., & Huckemann, S. (2015). Dimension reduction on polyspheres with application to skeletal representations. In International Conference on Networked Geometric Science of Information (pp. 22-29). Springer, Cham. (cited 2/8/24)

Eltzner, B., Huckemann, S., & Mardia, K. V. (2018). Torus principal component analysis with applications to RNA structure. The Annals of Applied Statistics, 12(2), 1332-1359 (cited 2/8/2024)

Fan, J., & Gijbels, I. (1996). Local Polynomial Modelling and Its Applications, Chapman and Hall, London (cited 3/26/24)

Feng, Q., Hannig, J., & Marron, J. S. (2016). A note on automatic data transformation. Stat, 5(1), 82-87  (cited 1/25/2024)

Feng, Q., Jiang, M., Hannig, J., & Marron, J. S. (2018). Angle-based joint and individual variation explained. Journal of multivariate analysis, 166, 241-265 (cited 2/22/24)

Fisher, N. I. (1995). Statistical analysis of circular data. Cambridge University Press (cited 2/6/24)

Fletcher, P. T. (2004) Statistical variability in nonlinear spaces: Application to shape analysis and DT-MRI, University of North Carolina at Chapel Hill  (cited 2/6/24)

Fletcher, P. T., Lu, C., Pizer, S. M., & Joshi, S. (2004). Principal geodesic analysis for the study of nonlinear statistics of shape. IEEE transactions on medical imaging, 23(8), 995-1005 (cited 2/6/2024)

Fréchet, M. (1948) Les éléments aléatoires de nature quelconque dans un espace distancié, Annales de l’institut Henri Poincaré, 10, 215-310 (cited 2/1/24, 2/6/24)

Gaydos, T. L., Heckman, N. E., Kirkpatrick, M., Stinchcombe, J. R., Schmitt, J., Kingsolver, J., & Marron, J. S. (2013). Visualizing genetic constraints. The Annals of Applied Statistics, 7(2), 860-882 (cited 1/30/2024)

Gersho, A. and Gray, R. M. (1991) Vector Quantization and Signal Compression, Springer, New York  (cited 3/19/24)

Godtliebsen, F., Marron, J. S., & Chaudhuri, P. (2002). Significance in scale space for bivariate density estimation. Journal of Computational and Graphical Statistics, 11(1), 1-21 (cited 3/26/24)

Godtliebsen, F., Marron, J. S., & Chaudhuri, P. (2004). Statistical significance of features in digital images. Image and Vision Computing, 22(13), 1093-1104 (cited 3/26/24)

Godtliebsen, F., Marron, J. S., & Pizer, S. M. (2002). Significance in scale-space for clustering. Spatial clustering modeling. Chapman and Hall/CRC, 24-36 (cited 3/26/24)

Good, I. J., & Gaskins, R. A. (1980). Density estimation and bump-hunting by the penalized likelihood method exemplified by scattering and meteorite data. Journal of the American Statistical Association, 75(369), 42-56 (cited 3/26/24)

Gower, J. C. (1974). Algorithm as 78: The mediancentre. Journal of the Royal Statistical Society. Series C (Applied Statistics), 23(3), 466-470 (cited 3/28/24)

Green, D. M., & Swets, J. A. (1966). Signal detection theory and psychophysics, Wiley (cited 1/25/24)

Grün, D., Kester, L., & Van Oudenaarden, A. (2014). Validation of noise models for single-cell transcriptomics. Nature methods, 11(6), 637-640 (cited 2/29/24)

Haldane, J. B. S. (1948) Note on the median of a multivariate distribution, Biometrika, 35, 414-415 (cited 3/28/24)

Hall, P., Marron, J. S., & Neeman, A. (2005). Geometric representation of high dimension, low sample size data. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 67(3), 427-444. (cited 3/5/24)

Hampel, F. M., Ronchetti, E. R., Rouseeuw, P. J. and Stahel, W. A. (2011) Robust Statistics: the Approach Based on Influence Functions, Wiley, New York (cited 3/28/24)

Hannig, J., & Marron, J. S. (2006). Advanced distribution theory for SiZer. Journal of the American Statistical Association, 101(474), 484-499 (cited 3/26/24)

Hannig, J., Marron, J. S., & Riedi, R. (2001). Zooming statistics: Inference across scales. Journal of the Korean Statistical Society, 30(2), 327-345 (cited 3/26/24)

Hartigan, J. A. (1975) Clustering Algorithms, Wiley, New York  (cited 3/19/24)

Hastie, T., & Stuetzle, W. (1989). Principal curves. Journal of the American Statistical Association, 84(406), 502-516 (cited 2/15/24)

Hotelling, H. (1933) Analysis of a Complex of Statistical Variables Into Principal Components. Journal of Educational Psychology, 24, 417-441 (cited 1/16/24, 1/30/24)

Hotelling, H. (1936) Relations between two sets of variates.  Biometrika,  28, 321-377 (cited 2/27/24)

Hron, K., Menafoglio, A., Templ, M., Hrůzová, K. & Filzmoser, P. (2016) Simplicial principal component analysis for density functions in Bayes spaces. Computational Statistics & Data Analysis, 94, 330-350  (cited 1/18/24)

Huang, H., Liu, Y., Yuan, M. and Marron J.S. (2014) Statistical Significance of Clustering Using Soft Thresholding, Journal of Computational and Graphical Statistics, DOI:10.1080/10618600.2014.948179 (cited 3/21/24)

Huber, P. (2011) Robust Statistics. Wiley, New York (cited 3/28/24)

Huckemann, S., Hotz, T., & Munk, A. (2010). Intrinsic shape analysis: Geodesic PCA for Riemannian manifolds modulo isometric lie group actions. Statistica Sinica, 1-58 (cited 2/6/24)

Inselberg, A. (1985) The Plane with Parallel Coordinates, Visual Computer 1: 69–91 (cited 1/16/24)

Inselberg, A. (2009) Parallel Coordinates: VISUAL Multidimensional Geometry and its Applications. Springer, New York (cited 1/16/24)

Izem, R., & Kingsolver, J. G. (2005). Variation in continuous reaction norms: quantifying directions of biological interest. The American Naturalist, 166(2), 277-289 (cited 1/30/24)

Izem, R., & Marron, J. S. (2007). Analysis of nonlinear modes of variation for functional data. Electronic Journal of Statistics, 1, 641-676 (cited 1/30/24)

Izenman, A. J., & Sommer, C. J. (1988). Philatelic mixtures and multimodal densities. Journal of the American Statistical association, 83(404), 941-953 (cited 3/26/24)

Jammalamadaka, S. R., & Sengupta, A. (2001). Topics in circular statistics (Vol. 5). World Scientific (cited 2/6/24)

Jeong, J.-Y. (2009) Estimation of Probability Distributions on Multiple Anatomical Objects and Evaluation of Statistical Shape Models, Ph.D. Thesis, Department of Computer Science, University of North Carolina (cited 2/6/24)

John, S. (1972) The distribution of a statistic used for testing sphericity of normal distributions. Biometrika, 59(1), 169-173 (cited 3/5/24)

Johnstone, I. M. (2008). Multivariate analysis and Jacobi ensembles: Largest eigenvalue, Tracy–Widom limits and rates of convergence. Annals of statistics, 36(6), 2638 (cited 3/7/24)

Jolliffe, I. T. (2002) Principal Component Analysis, Springer, New York, 2nd Edition, ISBN 978-0-387-95442-4   (cited 1/30/24)

Jones, M. C., Marron, J. S., & Sheather, S. J. (1996). A brief survey of bandwidth selection for density estimation. Journal of the American Statistical Association, 91(433), 401-407 (cited 3/26/24)

Jung, S., & Marron, J. S. (2009). PCA consistency in high dimension, low sample size context. The Annals of Statistics, 37(6B), 4104-4130 (cited 3/7/24)

Jung, S., Foskey, M., & Marron, J. S. (2011). Principal arc analysis on direct product manifolds. The Annals of Applied Statistics, 578-603 (cited 2/6/24)

Jung, S., Dryden I. L., & Marron, J. S., (2012) Analysis of Principal Nested Spheres, Biometrika, doi: 10.1093/biomet/ass022 (cited 2/6/24)

Jung, S., Sen, A. and Marron, J. S. (2012), Boundary behavior in high dimension, low sample size asymptotics of PCA, The Journal of Multivariate Analysis,109, 190–203 (cited 3/7/24)

Karcher, H. (2014). Riemannian center of mass and so called karcher mean. arXiv preprint arXiv:1407.2087 (cited 2/20/24)

Kaufman, L. and Rousseeuw, P. J. (2005) Finding Groups in Data: An Introduction to Cluster Analysis, Wiley, New York  (cited 3/19/24)

Kim, B. (2018). Small sphere distributions and related topics in directional statistics, Doctoral dissertation, University of Pittsburgh (cited 2/6/24)

Kimes, P. K., Cabanski, C. R., Wilkerson, M. D., Zhao, N., Johnson, A. R., Perou, C. M., Makowski, L., Marron, J. S. & Hayes, D. N. (2014) SigFuge: single gene clustering of RNA-seq reveals differential isoform usage among cancer samples, Nucleic Acids Research (2014): gku521 (cited 1/18/24)

Kimes, P. K., Liu, Y., Neil Hayes, D., & Marron, J. S. (2017). Statistical significance for hierarchical clustering. Biometrics, 73(3), 811-821 (cited 3/26/24)

Kingsolver, J. G., Heckman, N., Zhang, J., Carter, P. A., Knies, J. L., Stinchcombe, J. R., & Meyer, K. (2015). Genetic variation, simplicity, and evolutionary constraints for function-valued traits. The American Naturalist, 185(6), E166-E181 (cited 1/30/24)

Klein, R. J., Zeiss, C., Chew, E. Y., Tsai, J. Y., Sackler, R. S., Haynes, C., … & Bracken, M. B. (2005). Complement factor H polymorphism in age-related macular degeneration. Science, 308, 385-389 (cited 3/5/24)

Koch, I., Hoffmann, P., & Marron, J. S. (2014). Proteomics profiles from mass spectrometry. Electronic Journal of Statistics, 8(2), 1703-1713 (2/20/24)

Kruskal, J. B. (1964). Nonmetric multidimensional scaling: a numerical method. Psychometrika, 29(2), 115-129 (cited 1/30/24, 3/7/24)

LeBlanc, M., & Tibshirani, R. (1996). Combining estimates in regression and classification. Journal of the American Statistical Association, 91(436), 1641-1650 (cited 2/15/24)

Ledoux, M. (2001). The concentration of measure phenomenon (No. 89). American Mathematical Soc. (cited 3/5/24)

Lee, D. D., & Seung, H. S. (1999). Learning the parts of objects by non-negative matrix factorization. Nature, 401(6755), 788-791 (cited 2/8/24)

Li, G. and Chen, Z. (1985) Projection pursuit approach to robust dispersion matrices and principal components: primary theory and Monte Carlo, Journal of the American Statistical Association, 80, 759-776 (cited 3/28/24)

Lin, L. (1989), A Concordance Correlation Coefficient to Evaluate Reproducibility, Biometrics, 45, 255–268 (cited 1/30/24)

Lindeberg, T. (1994) Scale Space Theory in Computer Vision, Kluwer (cited 3/26/24)

Liu, R. Y. (1990). On a notion of data depth based on random simplices. The Annals of Statistics, 18(1), 405-414 (cited 3/26/24)

Liu, Y., Hayes, D. N., Nobel, A. and Marron, J. S. (2008) Statistical Significance of Clustering for High Dimension Low Sample Size Data, Journal of the American Statistical Association, 103, 1281-1293  (cited 3/21/24)

Liu, X., Parker, J., Fan, C., Perou, C. M., & Marron, J. S. (2009). Visualization of cross-platform microarray normalization. Batch Effects and Noise in Microarray Experiments: Sources and Solutions. Wiley, New York, 167-181 (cited 1/18/24)

Locantore, N., Marron, J. S., Simpson, D. G., Tripoli, N., Zhang, J. T., Cohen, K. L., … & Fan, J. (1999). Robust principal component analysis for functional data. Test, 8(1), 1-73 (cited 3/28/24)

Lock, E. F., Hoadley, K. A., Marron, J. S., & Nobel, A. B. (2013). Joint and individual variation explained (JIVE) for integrated analysis of multiple data types. The Annals of Applied Statistics, 7(1), 523 (cited 2/22/24)

Lu, X., & Marron, J. S. (2014). Analysis of juggling data: Object oriented data analysis of clustering in acceleration functions. Electronic Journal of Statistics, 8(2), 1842-1847 (cited 2/22/24)

Maggiora, G. M. (2006). On outliers and activity cliffs why QSAR often disappoints (cited 1/23/24)

Marčenko, V. A., & Pastur, L. A. (1967). Distribution of eigenvalues for some sets of random matrices. Mathematics of the USSR-Sbornik, 1(4), 457 (cited 3/7/24)

Mardia, K. V., & Jupp, P. E. (2009). Directional statistics. John Wiley & Sons (cited 2/6/24)

Marron, J. S. & Alonso, A. M. (2014) Overview of object oriented data analysis, Biometrical Journal, 56, 732-753 (cited 1/11/24)

Marron, J. S. & Dryden, I. L. (2021) Object Oriented Data Analysis, CRC Press (cited 1/11/24)

Marron, J. S., Ramsay, J. O., Sangalli, L. M., & Srivastava, A. (2014). Statistics of time warpings and phase variations. Electronic Journal of Statistics, 8(2), 1697-1702 (cited 2/22/24)

Marron, J. S., Ramsay, J. O., Sangalli, L. M., & Srivastava, A. (2015). Functional data analysis of amplitude and phase variation. Statistical Science, 30(4), 468-484 (cited 2/22/22)

Marron, J. S., & Wand, M. P. (1992). Exact mean integrated squared error. The Annals of Statistics, 712-736 (cited 3/26/24)

MacQueen, J. B. (1967) Some Methods for Classification and Analysis of Multivariate Observations, Proceedings of 5-th Berkeley Symposium on Mathematical Statistics and Probability, 281-297, University of California Press, Berkeley  (cited 3/19/24)

Menafoglio, A., Grasso, M., Secchi, P. & Colosimo, B.M. (2018) Profile monitoring of probability density functions via simplicial functional PCA with application to image data, Technometrics, 60, 497-510  (cited 1/18/24)

Miedema, J., Marron, J. S., Niethammer, M., Borland, D., Woosley, J., Coposky, J. & Thomas, N. E. (2012) Image and statistical analysis of melanocytic histology. Histopathology, 61(3), 436-444 (cited 1/25/24)

Milasevic, P., & Ducharme, G. R. (1987). Uniqueness of the spatial median. The Annals of Statistics, 15(3), 1332-1333 (cited 3/28/24)

Patrangenaru, V., & Ellingson, L. (2019). Nonparametric statistics on manifolds and their applications to object data analysis. CRC Press. (cited 1/23/24, 2/6/24, 2/15/24)

Parzen, E. (2004) Quantile probability and statistical data modeling, Statistical Science, 19, 652-662. (cited 1/18/24)

Paul, D. (2007). Asymptotics of sample eigenstructure for a large dimensional spiked covariance model. Statistica Sinica, 17(4), 1617 (cited 3/7/24)

Pearson, K. (1901) On Lines and Planes of Closest Fit to Systems of Points in Space, Philosophical Magazine, 2, 559-572 (cited 1/16/24, 1/30/24)

Perou, C. M., Sorlie, T., Eisen, M. B., & Van De Rijn, M. (2000). Molecular portraits of human breast tumours. nature, 406(6797), 747 (cited 3/21/24)

Pigoli, D., Pantelis, Z. H., Coleman, J. S. & Aston, J. A. D. (2015) The analysis of acoustic phonetic data: exploring differences in the spoken romance languages. arXiv preprint arXiv:1507.07587 (cited 1/11/24)

Pizer, S. M., Jung, S., Goswami, D., Vicory, J., Zhao, X., Chaudhuri, R., … & Marron, J. S. (2013). Nested sphere statistics of skeletal models. In Innovations for Shape Analysis (pp. 93-115). Springer, Berlin, Heidelberg (cited 2/6/24, 2/8/24)

Pizer, S. M., & Marron, J. S. (2017). Object statistics on curved manifolds. In Statistical Shape and Deformation Analysis (pp. 137-164). Academic Press (cited 2/6/24)

Pizer, S. M., Hong, J., Vicory, J., Liu, Z., Marron, J. S., Choi, H. Y., … & Wang, J. (2020). Object shape representation via skeletal models (s-reps) and statistical analysis. In Riemannian Geometric Statistics in Medical Image Analysis (pp. 233-271). Academic Press. (cited 2/6/24)

Prothero, J. B., Hannig, J., & Marron, J. S. (2021). New perspectives on centering. arXiv preprint arXiv:2103.12176 (cited 2/22/2024)

Prothero, J., Jiang, M., Hannig, J., Tran-Dinh, Q., Ackerman, A., & Marron, J. S. (2022). Data integration via analysis of subspaces (DIVAS). arXiv preprint arXiv:2212.00703 (cited 2/29/24)

Ramsay, J. O. & Silverman, B. W. (2002) Applied Functional Data Analysis, Springer, N.Y. ISBN 0-387-95414-7 (cited 1/11/24)

Ramsay, J. O. & Silverman, B. W. (2005) Functional Data Analysis, 2nd Edition, Springer, N.Y. ISBN 0-387-40080-X (cited 1/11/24)

Ramsay, J. O. (2005) Functional Data Analysis Web Site,  (cited 1/11/24)

Ramsay, J. O., Gribble, P., & Kurtek, S. (2014). Description and processing of functional data arising from juggling trajectories. Electronic Journal of Statistics, 8(2), 1811-1816 (cited 2/22/24)

Rao, C. R. (1945). Information and the accuracy attainable in the estimation of statistical parameters, Bull. Calcutta Math. Soc.,  37, 81-91. (cited 2/20/24)

Rao, C. R. (1958). Some statistical methods for comparison of growth curves. Biometrics, 14(1), 1-17  (cited 1/30/24)

Rondonotti, V., Marron, J. S., & Park, C. (2007). SiZer for time series: a new approach to the analysis of trends. Electronic Journal of Statistics, 1, 268-289 (cited 3/26/24)

Rousseeuw, P. J., & Leroy, A. M. (2005). Robust regression and outlier detection (Vol. 589). John Wiley & Sons (cited 3/28/24)

Roweis, S. T., & Saul, L. K. (2000). Nonlinear dimensionality reduction by locally linear embedding. Science, 290(5500), 2323-2326 (cited 2/15/24)

Sarle, W. S., and Kuo, A. H. (1993), The MODECLUS Procedure, Technical Report P-256, SAS Institute Inc., Cary  (cited 3/21/24)

Schmitz, H. P. and Marron, J. S. (1992) Simultaneous estimation of several size distributions of  income, Econometric Theory, 8, 476-488  (cited 3/26/24)

Shabalin, A. A., & Nobel, A. B. (2013). Reconstruction of a low-rank matrix in the presence of Gaussian noise. Journal of Multivariate Analysis, 118, 67-76 (cited 3/5/24)

Shen, H., & Huang, J. Z. (2008). Sparse principal component analysis via regularized low rank matrix approximation. Journal of multivariate analysis, 99(6), 1015-1034 (cited 3/7/24)

Shen, D., Shen, H., & Marron, J. S. (2013) Consistency of sparse PCA in high dimension, low sample size contexts. Journal of Multivariate Analysis, 115, 317-333 (cited 3/7/24)

Shen, D., Shen, H., Zhu, H., & Marron, J. S. (2016) The statistics and mathematics of high dimension low sample size asymptotics. Statistica Sinica, 26(4), 1747 (cited 3/7/24)

Siddiqi, K. and Pizer, S. M. (2007) Medial Representations Mathematics Algorithms and Applications, Springer, New York (cited 2/6/24)

Srivastava, A., Wu, W., Kurtek, S., Klassen, E., & Marron, J. S. (2011). Registration of functional data using Fisher-Rao metric. arXiv preprint arXiv:1103.3817 (cited 2/15/24)

Srivastava, A., & Klassen, E. P. (2016). Functional and shape data analysis (Vol. 1). New York: Springer (cited 2/15/24)

Srivastava, M. S., Katayama, S., & Kano, Y. (2013) A two sample test in high dimensional data. Journal of Multivariate Analysis, 114, 349-358 (cited 1/18/24)

Staudte, R. G. and Sheather, S. J. (2011) Robust Estimation and Testing, Wiley, New York (cited 3/28/24)

Stephens, M. A. (1974). EDF statistics for goodness of fit and some comparisons. Journal of the American statistical Association, 69(347), 730-737  (cited 1/25/24)

Talagrand, M. (1991). A new isoperimetric inequality and the concentration of measure phenomenon. In Geometric Aspects of Functional Analysis (pp. 94-124). Springer, Berlin, Heidelberg (cited 3/5/24)

Talagrand, M. (1995). Concentration of measure and isoperimetric inequalities in product spaces. Publications Mathématiques de l’Institut des Hautes Etudes Scientifiques, 81(1), 73-205 (cited 3/5/24)

Tenenbaum, J. B., De Silva, V., & Langford, J. C. (2000). A global geometric framework for nonlinear dimensionality reduction. Science, 290(5500), 2319-2323 (cited 2/6/24, 2/15/24)

Tracy, C. A., & Widom, H. (1994). Level-spacing distributions and the Airy kernel. Communications in Mathematical Physics, 159(1), 151-174 (cited 3/7/24)

Tucker, Derek J. (2024) fdasrvf software. (cited 2/20/24)

Tukey, J. W. (1977) Exploratory data analysis, Pearson, N.Y. ISBN 978-0201076165 (cited 1/11/24)

Venables, W.N. & Ripley, B.D. (2013) Modern applied statistics with S-PLUS. Springer Science & Business Media (cited 1/23/24)

Wand, M. P., & Jones, M. C. (1994). Kernel smoothing. Crc Press (cited 3/26/24)

Wang, H. & Marron, J. S. (2007) Object oriented data analysis: sets of trees, Annals of Statistics, 35, 1849-1873  (cited 1/11/24)

Wegelin, J. A. (2000). A survey of Partial Least Squares (PLS) methods, with emphasis on the two-block case, (cited 2/22/24)

Wei, S., Lee, C., Wichers, L., & Marron, J. S. (2015) Direction-projection-permutation for high dimensional hypothesis tests. Journal of Computational and Graphical Statistics, (cited 1/18/24, 3/7/24)

White, H. (2014). Asymptotic theory for econometricians. Academic press (cited 3/5/24)

Wilkinson, L. (2017). Visualizing Big Data Outliers through Distributed Aggregation. IEEE Transactions on Visualization and Computer Graphics (cited 3/28/24)

Wold, H. (1975). Soft modelling by latent variables: the non-linear iterative partial least squares (NIPALS) approach. Journal of Applied Probability, 12(S1), 117-142 (cited 2/22/24)

Wold, H. O. A. (1985). Partial least squares. Kotz S, Johnson N L. Encyclopedia of Statistical Sciences. New York: Wiley, 581-591 (cited 2/22/24)

Yang, X., Hannig, J., Hoadley, K. A., Carmichael, I., & Marron, J. S. (2023). Measure of Strength of Evidence for Visually Observed Differences between Subpopulations. Journal of Computational and Graphical Statistics, (just-accepted), 1-14.  (cited 1/18/24, 3/7/24)

Yao, J., Zheng, S., & Bai, Z. D. (2015). Sample covariance matrices and high-dimensional data analysis. Cambridge University Press (cited 3/7/24)

Yata, K., & Aoshima, M. (2009) PCA consistency for non-Gaussian data in high dimension, low sample size context. Communications in Statistics—Theory and Methods, 38(16-17), 2634-2652 (cited 3/5/24)

Yata, K., & Aoshima, M. (2010a) Effective PCA for high-dimension, low-sample-size data with singular value decomposition of cross data matrix. Journal of multivariate analysis, 101(9), 2060-2077 (cited 3/5/24)

Yata, K., & Aoshima, M. (2010b) Intrinsic dimensionality estimation of high-dimension, low sample size data with d-asymptotics. Communications in Statistics—Theory and Methods, 39(8-9), 1511-1521 (cited 3/5/24)

Yata, K., & Aoshima, M. (2012) Effective PCA for high-dimension, low-sample-size data with noise reduction via geometric representations. Journal of multivariate analysis, 105(1), 193-215 (cited 3/5/24)

Yata, K., & Aoshima, M. (2013) PCA consistency for the power spiked model in high-dimensional settings. Journal of multivariate analysis, 122, 334-354 (cited 3/5/24)

Yu, Q., Lu, X., & Marron, J. S. (2017). Principal Nested Spheres for Time-Warped Functional Data Analysis. Journal of Computational and Graphical Statistics, 26(1), 144-151 (cited 2/20/24)

Yu, Q., Risk, B. B., Zhang, K., & Marron, J. S. (2017). JIVE integration of imaging and behavioral data. NeuroImage, 152, 38-49 (cited 2/22/24)

Yushkevich, P., Pizer, S. M., Joshi, S., and Marron, J. S. (2001) Intiutive, localized analysis of shape variability, Information Processing in Medical Imaging (IPMI), eds. Insana, M. F. and Leahy, R. M. 402-408 (cited 2/6/24)

Zhang, L., Marron, J. S., Shen, H., & Zhu, Z. (2007). Singular value decomposition and its visualization. Journal of Computational and Graphical Statistics, 16(4), 833-854 (cited 1/30/24)

Zhang, L., Lu, S., & Marron, J. S. (2015). Nested nonnegative cone analysis. Computational Statistics & Data Analysis, 88, 100-110 (cited 2/8/24)

Zhang, J., Heckman, N., Cubranic, D., Kingsolver, J. G., Gaydos, T., & Marron, J. S. (2014). Prinsimp. R Journal, 6(2) (cited 1/30/24)

Zoubouloglou, P., García-Portugués, E., & Marron, J. S. (2023). Scaled torus principal component analysis. Journal of Computational and Graphical Statistics, 32(3), 1024-1035 (cited 2/8/24)